Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38616328

RESUMEN

OBJECTIVE: Differences in white adipose tissue (WAT) expression of mesoderm-specific transcript (Mest) in C57BL6/J mice fed a high-fat diet (HFD) are concomitant with and predictive for the development of obesity. However, the basis for differences in WAT Mest among mice is unknown. This study investigated whether HFD-inducible WAT Mest, as well as susceptibility to obesity, is transmissible from parents to offspring. METHODS: WAT biopsies of mice fed an HFD for 2 weeks identified parents with low and high WAT Mest for breeding. Obesity phenotypes, WAT Mest, hepatic gene expression, and serum metabolites were determined in offspring fed an HFD for 2 weeks. RESULTS: Offspring showed no heritability of obesity or WAT Mest phenotypes from parents but did show hepatic and serum metabolite changes consistent with their WAT Mest. Importantly, retired male breeders showed WAT Mest expression congruent with initial WAT biopsies even though HFD exposure occurred early in life. CONCLUSIONS: Disparity of HFD-induced Mest in mice is not heritable but, rather, is reestablished during each generation and remains fixed from an early age to adulthood. Short-term HFD feeding reveals variation of WAT Mest expression within isogenic mice that is positively associated with the development of obesity.

2.
Cell Metab ; 36(3): 526-540.e7, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272036

RESUMEN

That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Termogénesis , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Forma BB de la Creatina-Quinasa/metabolismo
3.
BMC Res Notes ; 16(1): 243, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777771

RESUMEN

OBJECTIVE: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry. RESULTS: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 h. Percoll purification from 100 to 200 mg fresh tissue yielded ~ 200-400 ug protein. Mitochondrial bioenergetics evaluated using the Seahorse XFe96 analyzer, a high-throughput respirometry platform, showed optimum mitochondrial input at 500 ng with respiratory control ratio ranging from 3.9 to 7.1 using various substrates demonstrating a high degree of functionality. Furthermore, proteomic analysis of Percoll-enriched mitochondria isolated from skeletal muscle using this method showed significant enrichment of mitochondrial proteins indicating high sample purity. This study established a methodology that ensures sufficient high quality mitochondria for downstream analyses such as mitochondrial bioenergetics and proteomics.


Asunto(s)
Mitocondrias , Proteómica , Ratones , Animales , Centrifugación por Gradiente de Densidad , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo
4.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503222

RESUMEN

Objective: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry. Results: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 hours. Percoll purification from 100-200 mg fresh tissue yielded ∼200-400 ug protein. Mitochondrial bioenergetics evaluated using the Seahorse XFe96 analyzer, a high-throughput respirometry platform, showed optimum mitochondrial input at 500 ng with respiratory control ratio ranging from 3.9-7.1 using various substrates demonstrating a high degree of functionality. Furthermore, proteomic analysis of Percoll-enriched mitochondria isolated from skeletal muscle using this method showed significant enrichment of mitochondrial proteins indicating high sample purity. This study established a methodology that ensures sufficient high quality mitochondria for downstream analyses such as mitochondrial bioenergetics and proteomics.

5.
Aging Cell ; 21(9): e13666, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986566

RESUMEN

Rapamycin treatment has positive and negative effects on progression of type 2 diabetes (T2D) in a recombinant inbred polygenic mouse model, male NONcNZO10/LtJ (NcZ10). Here, we show that combination treatment with metformin ameliorates negative effects of rapamycin while maintaining its benefits. From 12 to 30 weeks of age, NcZ10 males were fed a control diet or diets supplemented with rapamycin, metformin, or a combination of both. Rapamycin alone reduced weight gain, adiposity, HOMA-IR, and inflammation, and prevented hyperinsulinemia and pre-steatotic hepatic lipidosis, but exacerbated hyperglycemia, hypertriglyceridemia, and pancreatic islet degranulation. Metformin alone reduced hyperinsulinemia and circulating c-reactive protein, but exacerbated nephropathy. Combination treatment retained the benefits of both while preventing many of the deleterious effects. Importantly, the combination treatment reversed effects of rapamycin on markers of hepatic insulin resistance and normalized systemic insulin sensitivity in this inherently insulin-resistant model. In adipose tissue, rapamycin attenuated the expression of genes associated with adipose tissue expansion (Mest, Gpam), inflammation (Itgam, Itgax, Hmox1, Lbp), and cell senescence (Serpine1). In liver, the addition of metformin counteracted rapamycin-induced alterations of G6pc, Ppara, and Ldlr expressions that promote hyperglycemia and hypertriglyceridemia. Both rapamycin and metformin treatment reduced hepatic Fasn expression, potentially preventing lipidosis. These results delineate a state of "insulin signaling restriction" that withdraws endocrine support for further adipogenesis, progression of the metabolic syndrome, and the development of its comorbidities. Our results are relevant for the treatment of T2D, the optimization of current rapamycin-based treatments for posttransplant rejection and various cancers, and for the development of treatments for healthy aging.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hígado Graso , Hiperglucemia , Hiperinsulinismo , Hipertrigliceridemia , Resistencia a la Insulina , Síndrome Metabólico , Metformina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/complicaciones , Hiperinsulinismo/complicaciones , Hipertrigliceridemia/complicaciones , Hipoglucemiantes/farmacología , Inflamación/complicaciones , Insulina/metabolismo , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Sirolimus/farmacología , Sirolimus/uso terapéutico
6.
PLoS One ; 17(7): e0271913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867696

RESUMEN

Mesoderm specific transcript (Mest)/paternally expressed gene-1 (Peg1) is an imprinted gene expressed predominantly from the paternal allele. Aberrations in maternal behavior were previously reported in a Mest global knockout mouse (Mesttm1Masu). In this study, we performed in-depth social and maternal behavioral testing in a mouse model of Mest inactivation developed in our laboratory (Mesttm1.2Rkz). Mice with paternal allele inactivation (MestpKO) did not show anxiety after testing in the elevated plus maze, open field trial, and marble burying; nor depression-like behaviors in the tail suspension test. MestpKO showed normal social behaviors and memory/cognition in the three-chamber box test and the novel object recognition test, respectively. Primiparous MestpKO and MestgKO (biallelic Mest inactivation) female mice exhibited normal nest building and maternal behavior; and, virgin MestpKO and MestgKO female mice showed normal maternal instinct. Analyses of gene expression in adult hypothalamus, embryonic day 14.5 whole brain and adult whole brain demonstrated full abrogation of Mest mRNA in MestpKO and MestgKO mice with no effect on miR-335 expression. Our data indicates no discernible impairments in object recognition memory, social behavior or maternal behavior resulting from loss of Mest. The basis for the differences in maternal phenotypic behaviors between Mesttm1Masu and Mesttm1.2Rkz is not known.


Asunto(s)
Impresión Genómica , Proteínas , Alelos , Animales , Femenino , Conducta Materna , Mesodermo/metabolismo , Ratones , Proteínas/metabolismo
7.
Adipocyte ; 10(1): 574-586, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34714716

RESUMEN

Expansion of visceral white adipose tissue (vWAT) occurs in response to nutrient excess, and is a risk factor for metabolic disease. SPRY1, a feedback inhibitor of receptor tyrosine kinase (RTK) signaling, is expressed in PDGFRa+ adipocyte progenitor cells (APC) in vivo. Global deficiency of Spry1 in mice results in disproportionate postnatal growth of gonadal WAT (gWAT), while iWAT and BAT were similar in size between Spry1KO and WT mice. Spry1 deficiency increased the number of PDGFRa+ stromal vascular fraction (SVF) cells in gWAT and showed increased proliferation and fibrosis. Spry1KO gWAT had increased collagen deposition and elevated expression of markers of inflammation. In vitro, SPRY1 was transiently down regulated during early adipocyte differentiation of SVF cells, with levels increasing at later stages of differentiation. SPRY1 deficiency enhances PDGF-AA and PDGF-BB induced proliferation of SVF cells. Increased proliferation of SVF from Spry1KO gWAT accompanies an increase in AKT activation. PDGF-AA stimulated a transient down regulation of SPRY1 in wild type SVF, whereas PDGF-BB stimulated a sustained down regulation of SPRY1 in wild type SVF. Collectively, our data suggest that SPRY1 is critical for regulating postnatal growth of gWAT by restraining APC proliferation and differentiation in part by regulation of PDGFRa/b-AKT signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Tejido Adiposo , Tejido Adiposo Blanco , Animales , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Fracción Vascular Estromal
8.
J Mol Cell Cardiol ; 152: 1-16, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33259856

RESUMEN

BACKGROUND: Myeloid cells play an important role in a wide variety of cardiovascular disorders, including both ischemic and non-ischemic cardiomyopathies. Neuregulin-1 (NRG-1)/ErbB signaling has recently emerged as an important factor contributing to the control of inflammatory activation of myeloid cells after an ischemic injury. However, the role of ErbB signaling in myeloid cells in non-ischemic cardiomyopathy is not fully understood. This study investigated the role of ErbB3 receptors in the regulation of early adaptive response using a mouse model of transverse aortic constriction (TAC) for non-ischemic cardiomyopathy. METHODS AND RESULTS: TAC surgery was performed in groups of age- and sex-matched myeloid cell-specific ErbB3-deficient mice (ErbB3MyeKO) and control animals (ErbB3MyeWT). The number of cardiac CD45 immune cells, CD11b myeloid cells, Ly6G neutrophils, and Ly6C monocytes was determined using flow cytometric analysis. Five days after TAC, survival was dramatically reduced in male but not female ErbB3MyeKO mice or control animals. The examination of lung weight to body weight ratio suggested that acute pulmonary edema was present in ErbB3MyeKO male mice after TAC. To determine the cellular and molecular mechanisms involved in the increased mortality in ErbB3MyeKO male mice, cardiac cell populations were examined at day 3 post-TAC using flow cytometry. Myeloid cells accumulated in control but not in ErbB3MyeKO male mouse hearts. This was accompanied by increased proliferation of Sca-1 positive non-immune cells (endothelial cells and fibroblasts) in control but not ErbB3MyeKO male mice. No significant differences in intramyocardial accumulation of myeloid cells or proliferation of Sca-1 cells were found between the groups of ErbB3MyeKO and ErbB3MyeWT female mice. An antibody-based protein array analysis revealed that IGF-1 expression was significantly downregulated only in ErbB3MyeKO mice hearts compared to control animals after TAC. CONCLUSION: Our data demonstrate the crucial role of myeloid cell-specific ErbB3 signaling in the cardiac accumulation of myeloid cells, which contributes to the activation of cardiac endothelial cells and fibroblasts and development of an early adaptive response to cardiac pressure overload in male mice.


Asunto(s)
Adaptación Fisiológica , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda/prevención & control , Células Mieloides/inmunología , Receptor ErbB-3/fisiología , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Masculino , Ratones , Ratones Noqueados , Células Mieloides/metabolismo
9.
Obesity (Silver Spring) ; 28(6): 1075-1085, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32348021

RESUMEN

OBJECTIVE: Identifying novel approaches to combat obesity is important to improve health span. It was hypothesized that methionine restriction (MR) will induce weight loss in obese mice by reducing adipose tissue mass caused by increased energy expenditure and reprogramming of adipose tissue homeostasis. The roles of adiponectin (ADIPOQ) and fibroblast growth factor 21 (FGF21) during weight loss in MR mice were also tested. METHODS: Diet-induced obese (DIO) male C57BL/6J (wild type), Adipoq-deficient (Adipoq knockout [KO]), Fgf21-KO, and Adipoq-Fgf21 double-KO mice were used. Following a switch to high-fat control (DIO-CF, 60% fat/0.86% methionine) or MR (DIO-MR, 60% fat/0.12% methionine) diet, physiological parameters were measured, and inguinal and perigonadal adipose tissues were examined. RESULTS: Obese mice subjected to MR showed loss of body weight and adiposity, increased energy expenditure, and improved glucose tolerance that were independent of the actions of ADIPOQ and FGF21. MR induced reduction of circulating lipids, glucose, insulin, leptin, and insulin like growth factor 1 and increased ß-hydroxybutyrate, ADIPOQ, and FGF21 concentrations. In fat, MR upregulated protein levels of adipose triglyceride lipase, apoptosis-inducing factor, lysosomal-associated membrane proteins 1 and 2, autophagy-related protein 5, beclin-1, and light chain 3B I and II. CONCLUSIONS: MR reduction of adipose tissue mass in obese mice is associated with elevated lipolysis, apoptosis, and autophagy and occurs independently of the actions of ADIPOQ and FGF21.


Asunto(s)
Adiponectina/metabolismo , Adiposidad/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Metionina/metabolismo , Ratones Obesos/genética , Pérdida de Peso/fisiología , Animales , Masculino , Ratones
10.
Ann N Y Acad Sci ; 1418(1): 106-117, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377150

RESUMEN

Rapamycin (RAPA), an inhibitor of mTORC signaling, has been shown to extend life span in mice and other organisms. Recently, animal and human studies have suggested that inhibition of mTORC signaling can alleviate or prevent the development of cardiomyopathy. In view of this, we used a murine model of type 2 diabetes (T2D), BKS-Leprdb , to determine whether RAPA treatment can mitigate the development of T2D-induced cardiomyopathy in adult mice. Female BKS-Leprdb mice fed diet supplemented with RAPA from 11 to 27 weeks of age showed reduced weight gain and significant reductions of fat and lean mass compared with untreated mice. No differences in plasma glucose or insulin levels were observed between groups; however, RAPA-treated mice were more insulin sensitive (P < 0.01) than untreated mice. Urine albumin/creatinine ratio was lower in RAPA-treated mice, suggesting reduced diabetic nephropathy and improved kidney function. Echocardiography showed significantly reduced left ventricular wall thickness in mice treated with RAPA compared with untreated mice (P = 0.02) that was consistent with reduced heart weight/tibia length ratios, reduced myocyte size and cardiac fibrosis measured by histomorphology, and reduced mRNA expression of Col1a1, a marker for cardiomyopathy. Our results suggest that inhibition of mTORC signaling is a plausible strategy for ameliorating complications of obesity and T2D, including cardiomyopathy.


Asunto(s)
Cardiomiopatías/prevención & control , Cardiotónicos/farmacología , Dieta , Sirolimus/farmacología , Animales , Glucemia/análisis , Composición Corporal , Peso Corporal/efectos de los fármacos , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/etiología , Cardiotónicos/administración & dosificación , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/orina , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Insulina/sangre , Resistencia a la Insulina , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Sirolimus/administración & dosificación , Aumento de Peso
11.
J Cell Biochem ; 119(3): 2636-2645, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29058774

RESUMEN

Highly variable expression of mesoderm-specific transcript (Mest) in adipose tissue among genetically homogeneous mice fed an obesogenic diet, and its positive association with fat mass expansion, suggests that Mest is an epigenetic determinant for the development of obesity. Although the mechanisms by which MEST augments fat accumulation in adipocytes have not been elucidated, it has sequence homology and catalytic peptide motifs which suggests that it functions as an epoxide hydrolase or as a glycerol- or acylglycerol-3-phosphate acyltransferase. To better understand MEST function, detailed studies were performed to precisely define the intracellular organelle localization of MEST using immunofluorescence confocal microscopy. Lentiviral-mediated expression of a C-terminus Myc-DDK-tagged MEST fusion protein expressed in 3T3-L1 preadipocytes/adipocytes, and ear-derived mesenchymal stem cells (EMSC) from mice was observed in the endoplasmic reticulum (ER) membranes and is consistent with previous studies showing endogenous MEST in the membrane fraction of adipose tissue. MEST was not associated with the Golgi apparatus or mitochondria; however, frequent contacts were observed between MEST-positive ER and mitochondria. MEST-positive domains were also shown on the plasma membrane (PM) of non-permeabilized cells but they did not co-localize with ER-PM bridges. Post-adipogenic differentiated 3T3-L1 adipocytes and EMSC showed significant co-localization of MEST with the lipid droplet surface marker perilipin at contact points between the ER and lipid droplet. Identification of MEST as an ER-specific protein that co-localizes with lipid droplets in cells undergoing adipogenic differentiation supports a function for MEST in the facilitation of lipid accumulation and storage in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Proteínas/metabolismo , Células 3T3-L1 , Adipocitos/patología , Animales , Diferenciación Celular/fisiología , Hipertrofia/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Obesidad/metabolismo
12.
PLoS One ; 12(6): e0179879, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640866

RESUMEN

Interindividual variation of white adipose tissue (WAT) expression of mesoderm specific transcript (Mest), a paternally-expressed imprinted gene belonging to the α/ß-hydrolase fold protein family, becomes apparent among genetically inbred mice fed high fat diet (HFD) and is positively associated with adipose tissue expansion (ATE). To elucidate a role for MEST in ATE, mice were developed with global and adipose tissue inactivation of Mest. Mice with homozygous (MestgKO) and paternal allelic (MestpKO) inactivation of Mest were born at expected Mendelian frequencies, showed no behavioral or physical abnormalities, and did not perturb expression of the Mest locus-derived microRNA miR-335. MestpKO mice fed HFD showed reduced ATE and adipocyte hypertrophy, improved glucose tolerance, and reduced WAT expression of genes associated with hypoxia and inflammation compared to littermate controls. Remarkably, caloric intake and energy expenditure were unchanged between genotypes. Mice with adipose tissue inactivation of Mest were phenotypically similar to MestpKO, supporting a role for WAT MEST in ATE. Global profiling of WAT gene expression of HFD-fed control and MestpKO mice detected few differences between genotypes; nevertheless, genes with reduced expression in MestpKO mice were associated with immune processes and consistent with improved glucose homeostasis. Ear-derived mesenchymal stem cells (EMSC) from MestgKO mice showed no differences in adipogenic differentiation compared to control cells unless challenged by shRNA knockdown of Gpat4, an enzyme that mediates lipid accumulation in adipocytes. Reduced adipogenic capacity of EMSC from MestgKO after Gpat4 knockdown suggests that MEST facilitates lipid accumulation in adipocytes. Our data suggests that reduced diet-induced ATE in MEST-deficient mice diminishes hypoxia and inflammation in WAT leading to improved glucose tolerance and insulin sensitivity. Since inactivation of Mest in mice has minimal additional effects aside from reduction of ATE, an intervention that mitigates MEST function in adipocytes is a plausible strategy to obviate obesity and type-2-diabetes.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas/metabolismo , Adipogénesis/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Animales , Técnicas de Inactivación de Genes , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Proteínas/genética
13.
J Cell Biochem ; 117(9): 2182-93, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26910604

RESUMEN

Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Adipocitos Blancos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Metabolismo de los Lípidos/fisiología , Modelos Biológicos , Células 3T3-L1 , Adipocitos Blancos/citología , Tejido Adiposo Blanco/citología , Animales , Ratones
14.
Biochimie ; 124: 134-140, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26005096

RESUMEN

The expression of a subset of genes including mesoderm specific transcript (Mest), secreted frizzled-related protein 5 (Sfrp5) and bone morphogenetic protein 3 (Bmp3) in adipose tissue biopsies of C57BL/6J mice before exposure to an obesogenic diet were shown to be predictive for the development of obesity in mice after feeding a high fat diet for 8 weeks. This observation led to the supposition that adipose tissue expression of this subset of genes within inbred strains of mice could be associated with their susceptibility in the development of adiposity when fed a low fat diet. The analyses of male mice from 5 inbred strains showed average bodyweights ranging from 25.82 to 36.58 g at 16 weeks of age. Bodyweight was highest for AKR/J and adiposity correlated highly with bodyweight for all strains. Analyses of epididymal fat gene expression showed Mest, Sfrp5 and Bmp3 to be highly concomitant with adiposity across all strains of mice. Naked 1 (Nkd1), a gene previously shown to be associated with variations of adiposity in mice fed a high fat diet, but not predictive for the development of adiposity, showed no correlation with adiposity. In addition, the expression of Mest and Sfrp5 were tightly associated across the 5 mouse strains with the highest and lowest expression occurring in DBA/2J and C57BL/6J (B6) respectively suggesting a common mechanism for their regulation. Surprisingly, when independent cohorts for these 2 strains were fed high fat diet for 8 weeks, DBA/2J showed no further increase in Sfrp5 expression whereas expression levels for B6 mice were induced almost 20-fold. Analyses of (B6 x DBA2/J) F1 mice fed a low fat diet for 8 weeks showed intermediate levels of adiposity and gene expression for Sfrp5 and Mest suggesting a strong genetic basis for these differences.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad/fisiología , Dieta , Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Masculino , Ratones , Especificidad de la Especie
15.
Ann N Y Acad Sci ; 1363: 50-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26647164

RESUMEN

Heterogeneity of obesity within a population of inbred mice fed an obesogenic high-fat diet (HFD) is associated with changes of gene expression in white adipose tissue (WAT). One gene in particular with large variations among mice, mesoderm-specific transcript (Mest), has been shown to be highly inducible after being fed a short-term HFD, and its expression in WAT before HFD feeding is predictive for susceptibility to the development of obesity. To gain further insight into the association of Mest with rapid changes in body composition, 96 individually housed C57BL/6J mice were fed an HFD for only 2 weeks, resulting in a 12-fold and 90-fold variation in Mest mRNA in visceral epididymal and subcutaneous inguinal WAT, respectively. WAT Mest mRNA was positively associated with interindividual variation of fat mass. Surprisingly, there was only a slight association of WAT Mest with food intake when normalized by body weight or lean mass. In addition, WAT Mest expression coincided highly with the expression of the transcription factor Kruppel-like factor 14 (Klf14), an imprinted gene that regulates lipid metabolism in WAT. Our data suggest that KLF14 transcriptional activity may partially mediate, or act in concert with, MEST as part of an epigenetic mechanism that promotes fat mass accumulation in mice fed an obesogenic diet.


Asunto(s)
Tejido Adiposo/anatomía & histología , Tejido Adiposo/metabolismo , Adiposidad/genética , Grasas de la Dieta , Animales , Composición Corporal , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos , Epigénesis Genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Tamaño de los Órganos , Fenotipo , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , Factores de Tiempo
16.
J Cell Physiol ; 230(9): 2032-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25663195

RESUMEN

Obesity has been associated with high bone mineral density (BMD) but a greater propensity to fracture. Some obese individuals have increased marrow adipose tissue (MAT), but the impact of MAT on bone turnover remains controversial, as do changes in BMD associated with a high fat diet (HFD). In this study we hypothesized that MAT volume would increase in response to HFD but would be independent of changes in BMD. Hence, we fed C57BL/6J (B6) male mice at 3 weeks of age either a high fat diet (60 kcal %) or regular diet (10 kcal %) for 12 weeks (n = 10/group). We measured MAT volume by osmium staining and micro-CT (µCT) as well as bone parameters by µCT, histomorphometry, and dual-energy X-ray absorptiometry. We also performed a short-term pilot study using 13-week-old B6 males and females fed a HFD (58 kcal %) for 2 weeks (n = 3/sex). Both long- and short-term HFD feedings were associated with high MAT volume, however, femoral trabecular bone volume fraction (BV/TV), bone formation rate and cortical bone mass were not altered in the long-term study. In the short-term pilot study, areal BMD was unchanged after 2 weeks of HFD. We conclude that, for B6 mice fed a HFD starting at wean or 13 weeks of age, MAT increases whereas bone mass is not altered. More studies are needed to define the mechanism responsible for the rapid storage of energy in the marrow and its distinction from other adipose depots.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Médula Ósea/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Densidad Ósea/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Metabolismo Energético , Femenino , Fémur/efectos de los fármacos , Fémur/crecimiento & desarrollo , Humanos , Leptina/metabolismo , Masculino , Ratones , Obesidad/patología , Osteogénesis/efectos de los fármacos
17.
J Appl Physiol (1985) ; 114(6): 734-41, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23329815

RESUMEN

To determine how astrocytic leptin signaling regulates the physiological response of mice to diet-induced obesity (DIO), we performed metabolic analyses and hypothalamic leptin signaling assays on astrocytic leptin-receptor knockout (ALKO) mice in which astrocytes lack functional leptin receptor (ObR) signaling. ALKO mice and wild-type (WT) littermate controls were studied at different stages of DIO with measurement of body wt, percent fat, metabolic activity, and biochemical parameters. When fed regular chow, the ALKO mice had similar body wt, percent fat, food intake, heat dissipation, respiratory exchange ratio, and activity as their WT littermates. There was no change in blood concentrations of triglyceride, soluble leptin receptor (sObR), mRNA for leptin and uncoupling protein 1 (UCP1) in adipose tissue, and insulin sensitivity. Unexpectedly, in response to a high-fat diet the ALKO mice had attenuated hyperleptinemia and sObR, a lower level of leptin mRNA in subcutaneous fat, and a paradoxical increase in UCP1 mRNA. Thus, ALKO mice did not show the worsening of obesity that occurs with normal WT mice and the neuronal ObR mutation that results in morbid obesity. The findings are consistent with a competing, counterregulatory model between neuronal and astrocytic leptin signaling.


Asunto(s)
Astrocitos/metabolismo , Dieta Alta en Grasa , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidad/prevención & control , Receptores de Leptina/deficiencia , Adiposidad , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Peso Corporal , Modelos Animales de Enfermedad , Metabolismo Energético , Genotipo , Insulina/sangre , Canales Iónicos/genética , Canales Iónicos/metabolismo , Leptina/sangre , Leptina/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Actividad Motora , Obesidad/sangre , Obesidad/genética , Fenotipo , ARN Mensajero/sangre , Receptores de Leptina/sangre , Receptores de Leptina/genética , Transducción de Señal , Grasa Subcutánea/metabolismo , Factores de Tiempo , Triglicéridos/sangre , Proteína Desacopladora 1
18.
PLoS One ; 7(2): e30392, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383960

RESUMEN

Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a room temperature of 23 °C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5 °C) or treated with ß3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23 °C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5 °C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Tejido Adiposo/patología , Adipocitos/citología , Alimentación Animal , Animales , Animales Recién Nacidos , Diferenciación Celular , Regulación de la Expresión Génica , Genómica , Masculino , Desnutrición , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación Oxidativa , Fenotipo , ARN Mensajero/metabolismo , Temperatura
19.
J Biol Chem ; 286(13): 11659-71, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21296886

RESUMEN

An ATP-Mg(2+/)P(i) inner mitochondrial membrane solute transporter (SLC25A25), which is induced during adaptation to cold stress in the skeletal muscle of mice with defective UCP1/brown adipose tissue thermogenesis, has been evaluated for its role in metabolic efficiency. SLC25A25 is thought to control ATP homeostasis by functioning as a Ca(2+)-regulated shuttle of ATP-Mg(2+) and P(i) across the inner mitochondrial membrane. Mice with an inactivated Slc25a25 gene have reduced metabolic efficiency as evidenced by enhanced resistance to diet-induced obesity and impaired exercise performance on a treadmill. Mouse embryo fibroblasts from Slc25a25(-/-) mice have reduced Ca(2+) flux across the endoplasmic reticulum, basal mitochondrial respiration, and ATP content. Although Slc25a25(-/-) mice are metabolically inefficient, the source of the inefficiency is not from a primary function in thermogenesis, because Slc25a25(-/-) mice maintain body temperature upon acute exposure to the cold (4 °C). Rather, the role of SLC25A25 in metabolic efficiency is most likely linked to muscle function as evidenced from the physical endurance test of mutant mice on a treadmill. Consequently, in the absence of SLC25A25 the efficiency of ATP production required for skeletal muscle function is diminished with secondary effects on adiposity. However, in the absence of UCP1-based thermogenesis, induction of Slc25a25 in mice with an intact gene may contribute to an alternative thermogenic pathway for the maintenance of body temperature during cold stress.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Metabolismo Energético/fisiología , Proteínas Mitocondriales/metabolismo , Resistencia Física/fisiología , Termogénesis/fisiología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Adiposidad/fisiología , Animales , Proteínas de Unión al Calcio/genética , Respuesta al Choque por Frío/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Obesidad/genética , Obesidad/metabolismo , Condicionamiento Físico Animal , Proteína Desacopladora 1
20.
Prog Mol Biol Transl Sci ; 94: 75-123, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21036323

RESUMEN

Brown adipose tissue is highly differentiated and has evolved as a mechanism for heat production based upon uncoupling of mitochondrial oxidative phosphorylation. Additionally, large amounts of lipid can be stored in the cells to provide fuel necessary for heat production upon adrenergic stimulation from the central nervous system, and a highly developed vascular system evolved to rapidly deliver heat to vital organs. For unknown reasons, the development of brown adipocytes has two independent pathways: one originates from muscle progenitor cells in the fetus and leads to a fully functional cell at birth (interscapular-type brown fat), while the other transiently emerges in traditional white fat depots at weaning, regresses, and then can be induced in adult mice upon adrenergic stimulation. No genetic variants have been found for interscapular fat, but naturally occurring alleles at eight genetic loci in mice lead to over 100-fold variation for brown adipocytes in white fat upon adrenergic stimulation. The ability to activate this potential for energy expenditure is of great interest in obesity research.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Animales , Linaje de la Célula/genética , Mapeo Cromosómico , Variación Genética , Humanos , Obesidad/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...